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On the Mean Iteration (a, b) + (a+3b x? +b) 

By J. M. Borwein and P. B. Borwein* 

Abstract. The iterative process 

an+1 = (an + 3bn)/4, bn+1 = ( +bn )/2 

is studied in detail. The limit of this quadratically converging process is explicitly 
identified, as are the uniformizing parameters. The role of symbolic computation, in 
discovering these nontrivial identifications, is highlighted. 

1. Introduction. The iterative process 

a 1 
an + 3bn 

(1.1) an+l:= 

and 

(1.2) bn+2 = b 

with ao > 0 and bo > 0 is quadratically converging. This follows easily from the 
facts that a, > bl, that 

1 =Va (an -bn 
)2 

(1.3) (an+1 -bn+l) = 4 - a- 2 = 4( 6 + /b)2< (an-bn)/4 

and that 

(1.4) a, > b, implies an > an+1 > bn+1 > bn 

The common limit of the iteration commencing with ao > 0 and with bo > 0 
will be denoted by B(ao, bo). The "B" is in honor of Borchardt, whose role in this 
story will be discussed later. The restriction that the variables be real and positive 
is convenient, though later it will be obvious that ao and bo complex with positive 
real part is sufficient. 

The first aim of this paper is to explicitly identify the limit function B and 
various related quantities in terms of "familiar" functions. That this is possible is 
by no means initially apparent. 
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Consider the following five mean iterations: 

(1.5) a l1 a + bn bn(+l+(b2 ) 

(1.6) ~~~~anw + bn an+ 2 + b 2;/ 

(1.6) an+1 bn+1 = n 2 2 

(1-6) an+1 bnb1 = n3bn 

2 an 
+ bn 

(1.7) an+1 2 bn+1 a 

(1.8) an+1 an + 7bn bn+1= lan + bn 
8 ~~~~~4 

(1.9) an+1 an= 
b 

b+ 2 1/an +1/bn~ 

In each case the process, starting with ao = 1, bo = x, converges quadratically to 
a function, f(x), which is analytic in the right half plane. In the case of iteration 
(1.9), because 

an+lbn+l = anbn = =obo 

it is easy to see that f(x) = x. The iteration (1.7) is the arithmetic-geometric 
mean iteration (AGM) of Gauss, Lagrange, and Legendre. For this iteration the 
limit can be described in terms of complete elliptic integrals. This is the prototype 
for our analysis, and we discuss it further in the next section. 

For these two examples, the limit functions solve simple algebraic differential 
equations, as do various related quantities. This will also prove to be the case for 
Borchardt's iteration. 

The state of our knowledge is much less complete for iterations (1.5), (1.6) and 
(1.8), despite their apparent similarities. In none of these three cases can we identify 
the limit, and it is the authors' opinion that the limit functions in these cases are 
hypertranscendental, that is, they solve no algebraic differential equation. (See [5].) 
That iterations (1.6) and (1.8) do not belong to the same body of theory as the 
AGM is provable and will be dealt with in a future paper. One can show, for this 
iteration, which was studied by Stieltjes and later by Lehmer [8] and others, that 
the uniformizing variables are hypertranscendental, and hence the profitable link 
to modular functions possessed by the AGM does not exist. 

In fact, the AGM, and variations on it, are the only known examples of quadrat- 
ically converging iterations, where the underlying functions being iterated are alge- 
braic, which have identifiable nonalgebraic limits. It is easy to write down quadrat- 
ically converging processes-it is usually impossible to determine whether the limit 
is a familiar function. 

What then gives us any hope of analyzing the function B in Borchardt's itera- 
tion? Let B(x) := B(1, x). Then B(x) satisfies the functional equation 

(1.10) B(x) = + B 

and so 

(1.11) B(z) = 47 ( ) 
In-= 
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where 

2(v_ 
+ Xn) 

X~ ~~ +1 = : X 

Thus B(x) is exceedingly easy to compute-a handful of iterations gives 32 terms 
of the Taylor series of B at 1. The observation that gave us faith that we would be 
able to analyze Borchardt's iteration completely was noticing that 

(1.12) B(x) 3(log )2 as x t 0. 

This we observed purely computationally. The reason for trying such a calculation 
stems from analogy with the AGM-and from the knowledge that once such an 
asymptote exists, the process must have, lurking in the background, some modular 
functions. We are thus, as we shall see, assured of unearthing something interesting. 

This, of course, does not explain why we would look at this iteration at all. It is 
here that Borchardt enters. 

Borchardt [2] examined the four-term quadratically converging iteration 

an + bn + Cn + dn 
an+ l 1 4 

b+i 
bn+l = 2 (1.13) a + 

Cn+l = 2 
Va -d n+ Vb -Cn 

dn+l = 2 
and showed how to write the limit explicitly in terms of four incomplete elliptic-like 
integrals (see Section 7 for further discussion). This amazing iteration is the only 
truly multidimensional iteration we know that is amenable to complete analysis. 
Moreover, the AGM arises by setting an = cn and bn = dn. Our iteration is 
the specialization given by setting bn = Cn= dn in (1.13). Borchardt covers this 
instance, though only in an indirect fashion. His analysis does, however, guarantee 
that this particular specialization will be of interest. Our analysis is in fact entirely 
different-it is hard to even see if we end up in the same place. Borchardt does 
not fully examine his iteration (see Section 7), and to our knowledge no proofs 
exist in the literature. (We intend to offer an elementary development in a future 
monograph.) Peetre et al. [1], [10] mention this iteration and other issues related 
to this present paper, and give some references. 

This paper shows how to analyze Borchardt's iteration of (1.1) and (1.2) com- 
pletely-and offers an approach to analyzing any such process where a logarith- 
mic asymptote appears. We proceed from the iteration directly without assuming 
knowledge of the limit function. It is much easier to verify a limit formula than to 
derive it, and thus we wish to stress the derivation. The paper, in fact, follows our 
own path of discovery-a path we followed before we understood how our special 
case related to Borchardt's multidimensional iteration. The approach is in part 
experimental, and such experimentation is greatly facilitated by a symbolic ma- 
nipulation package such as MACSYMA or MAPLE. (Our favorite is the Waterloo 
University product MAPLE). We believe the interplay between the computations 
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and the final analysis is of independent interest, and thus the paper proceeds to 
describe both the results and their discovery. 

Further information on mean iterations is available in [1], [4], [7], and [8]. The 
interesting and central role of the AGM in the calculation of elementary functions, 
and of 7r, is discussed in [3], [4], [6], [9] and [11]. 

Finally, the reader who is only interested in the results should skip to Section 5. 

2. The AGM. We wish to briefly describe the AGM, because we intend to 
proceed by analogy. A thorough discussion of the AGM is given in [4]. If the 
common limit of 

an + bn 
(2.1) an+i := 2 bn+l := b 

is denoted by AG(ao, bo), then, for 0 < x < 1, 

(2.2) AG(1, x) = '/2 

where K(x) is the complete elliptic integral of the first kind, 

(2.3) K(x)l:=j 1- d 

N1 X2 sin 2 0 

and 

(2.4) K'(x) := K(1 - X2) = K(x'), 

where x' := v . The functions K and K' both solve the differential equation 

(2.5) (X3-X d Y1) + xy =O. 

Theta functions, 03 and 04, are defined for Iql < 1 by 
00 

(2.6) 03 (q) = E qfn2 

n=-oo 

and 
00 

(2.7) 04(q) E= ( q) 2 
= 03(- q). 

n=-oo 

Then 02 and 02 uniformize the AGM in the sense that 

02 (q) + 02 (q) (2.8) 02 3(q2) = 2 4 

and 

(2-9) 02 (q2) = A3(q)04(q). 

Hence, 

(2.10) AG(082(q),02(q)) = 1, 

and by homogeneity 

(2.11) AG (1, 04 (q) ) 1 
02 02), q)- 
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In particular, if x' = 02 (q)/02 (q), then x = 02 (q)/02 (q), while 

(2.12) 2K(z) = 02(q) 

and 

(2.13) q = e-K'(x)/K(x) 

There are a number of ways to establish these relations. Several are discussed 
in [4]. All of these either require knowing the limit or at some stage in the process 
making an inspired guess. There is no practical algorithm for determining when a 
function is hypertranscendental or elementary. 

If one starts with the complete elliptic integral K, there is a better chance of 
uncovering that it satisfies a functional equation equivalent to the AGM: 

(2.14) K(x) = x K (1 ) 

This, essentially, was the approach of Fagnano, Lagrange and Legendre. If one 
is given both the functional equation and the putative solution, then checking that 
it is correct is an exercise, albeit a moderately difficult one. If, however, one has 
just the iteration and one wishes to deduce the solution, then one has an entirely 
different problem. This was the problem Gauss solved. His intial observation, 
recorded in his notebook in 1799 and made purely computationally, was that 

1 2a 21 dt 
AG(1 IV) and -J 

agreed to at least eleven decimal places. His derivation of (2.2) relied on writing 

(2.15) =11dx1 =+d2 + 
AG(l1+x, 1- x) 

and using the functional equation (2.14) to get a series of equations for the coeffi- 
cients di. From these he deduced that 

(2.16) di [(2i-1)!] 42i-1 

The rest of the derivation is now easy. 
The theta function approach can also be found in Gauss' collected works. How- 

ever, the systematic use of theta functions springs surprisingly fully formed in 
Jacobi's 1829 masterpiece Fundamenta Nova. In many ways it is the most satisfac- 
tory approach and has the most ancillary number-theoretic and function-theoretic 
content. Once again, even given all the relationships (2.6)-(2.13), proving them 
requires a fair amount of effort. A vital connection comes from the fact that 

04 (q) 
(2.17) A(q) =4(q) 

is a modular function. In particular, 

(2.18) A(er/t) = 1 - A(et), 

which again is not obvious. Because A is modular, it satisfies an algebraic differential 
equation and so do 03 (q) and 04 (q)-which once again is surprising and nonobvious. 
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As already observed, the integral K satisfies 

(2.19) K(x)= 1+ K(2 )x 

while the complementary integral K' satisfies 

(2.20) K'(X) = +K' 

Thus, 

(2.21) K'( ) K (_1 + x ) 

and, since on setting k(q) := /j, 

(2.22) k(q 2) = 2+k(q)' 1 +k(q)' 

(2.23) K' (k(q) = 2 K (k(q2)). 

All of this is derived in [4]. The aim is now to see which bits of this have fruitful 
counterparts in analyzing Borchardt's iteration. 

Finally, the AGM has a logarithmic asymptote: 

(2.24) AG(1,x) , 2lo()' X '? 

The logarithmic asymptote is important in applications. It is also important 
because without it, A(q) could not be meromorphic at zero and hence, could not 
be modular. 

3. Computation Observations. The AGM has a log asymptote, while Bor- 
chardt's iteration has a log squared asymptote. However, the iteration 

(3.1) an+1 = n 
) 

(3.2) bn+1 = (anbn+b ) " 

derived from Borchardt's iteration by replacing an by an and bn by bn has a log 
asymptote, and it transpires that this is a more "natural" iteration to work with. 

We will denote the common limit of (3.1) and (3.2) commencing with ao and bo 
by B2(ao,bo). Then, if B2(X) B2(1,X), 

(3.3) B2(Z) =J 
n=O 

4 

where 

(3.4) Zn+l 
2 1 (1+ n) and zo =Z. 

Now, computationally, it appears that 
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It might be reasonable at this point to look at the Taylor expansion of 1/B2(x) at 
one, essentially as Gauss did for the AGM, and hope to identify it as a pFq of some 
description. This we did symbolically in MAPLE. We then looked to see if the 
rational coefficients factored into small primes with the hope of spotting binomial 
or multinomial coefficients-unfortunately this fails. 

If we let 

(3.6) r(x) 2x 1 + z) 
1+3x2 

then B2 satisfies 
(3.7) B2(x) 

1~+ 3x2 
(3 7) B2(z) = B2 (r(x)). 

If s :=r-1 then 

(3.8) s(W) - (1 + 3X2)1/2 + 3(1 -2)1/2 

Furthermore, if S(n) :S(n-)(S) is the nth iterate of s, then it is an easy check 
that S (n) (x) 0 quadratically for x E (0, 1). In particular, if we define 

00 1 

(3.9) B' (x) := I| 

where Yn+1 S(Yn) and yo := x, then B' is analytic in a neighborhood of zero 
and is the unique such solution (with B'(0) = 1) of the functional equation 

(3.10) B (x) = /1 + 3x2B(r(x)). 

In particular, 

(3.11) (X) = 2 2 (r(x)) 
B2 B2 

and, provided (3.5) holds, 

(3.12) B2 2X (log ) 

We hope that B2 and B' play the roles here that AG and AG' play for the AGM. 
For this to be the case, we want to find a function I so that 

(3.13) B (x) := B2(I(x)). 

There is such an I, and it is given by 

(3.14) I(Z)=(/13 )1z)1x) 2 

Note that I is an involution on [0,1]. It is not too hard to find such an I, if it 
exists. It is simply a matter of substituting (3.13) into (3.7) and trying to find I so 
that (3.9) holds. To prove that (3.13) holds is just a matter now of checking that 
B2(I(x)) also solves (3.10) and is analytic at zero with B2(I(O)) = 1. We are still 
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following our route of discovery and at this point we computed a number of values 
and observed in particular that 

(I1 =2 and 
B - 

B2 (3) B2 Ky3) 
4. The Modular Link. Suppose we define q by 

(4.1) q:= exp( 2 2 (x)). 

This mirrors (2.13) for the AGM. Then by (3.11), 

(4.2) q ex (-2 (r1 (x))). 

We wish, as with the AGM, to find x as a function of q. Why? 
Firstly, x(q) will be analytic at zero, because of the log asymptote at zero. 

Secondly, if x(t) A (q) where q e-rt/2v/r, then trivially 

(4.3) x(t + i43) = x(t) 

and, less trivially, from (3.13) and the fact that I is an involution, 

(4.4) x(-) = I(x(t)). 

Suddenly, it starts to look like x(t) must be simply related to any modular function 
with respect to the group of transformations generated by the M6bius transfor- 
mations t + i4v/3 and -1/t. Since any two modular functions are algebraically 
related, we ought then to be able to identify x in terms of known functions. It is 
now of considerable interest to actually compute x(q), and one can do this from the 
observation that (4.1) and (4.2) imply that 

(4.5) x(q2) = r-1(x(q)) = s(x(q)) 

with s given by (3.8). This functional equation has a unique (essentially) analytic 
solution and can in fact be solved by writing the power series expansion for x 
and comparing coefficients. There is, however, a general procedure for solving an 
equation like (4.5). This is contained in the next proposition. 

PROPOSITION 1. Suppose R is analytic at zero and R(x) - x2T(x), where 
T(O) = 1. Then M given by 

00 

(4.6) M(x) := x J [S(R(')(x))]112, 
n=O 

where S(x) := T(x, satisfies 

(4.7) [M(x)]2 = M(R(x)). 

Furthermore, M is analytic in a neighborhood of zero, with a simple zero at zero, 
and is the unique such solution of (4.6). If G M1, then 

(4.8) G(x2) = R(G(x)), 

and G is the unique analytic solution of (4.8) with a simple zero at zero. 

Proof. It is a verification that (4.6), under the given conditions, defines an 
analytic function in some neighborhood of zero. It is then a further check that M 
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satisfies (4.7). The uniqueness follows from the functional equation (4.7) and the 
identity theorem for analytic functions. 0 

The main reason for recording this result (which is standard) is that it provides 
an easy general algorithm for solving functional equations like (4.5). From (4.6) 
one computes (symbolically) the Taylor series of M and one then inverts to find 
the Taylor series of M-1, using Newton's method. 

The above method, renormalized at 1, allowed for the easy generation of at least 
50 terms of the power series of x(q). Observe, from (3.3), that 

B2(1, x(q)) = + 3(q2)2 B2(1, x(q 2)) 

(4.9) 00 

n-l I + z((2n)2 L (q) n=1 1 +3x(q2~2- 

In particular, if M(q) := L(q)x(q), then 

(4.10) B2(L(q), M(q)) = 1, 

and given x(q), both L(q) and M(q) are easy to calculate. Observe that L(q) and 
M(q) satisfy 

(4.11) ( (L(q))2 + 3(M(q))2\ 1/2 

and 

(4.12) M(q2) (L(q)M(q) + (M(q))2 1/2 

and are in fact the uniformizing parameters for Borchardt's iteration, in analogy 
with the theta functions' role in the AGM. 

At this point, we generated several hundred coefficients of L and M from the 
recursions implicit in (4.11) and (4.12). The pattern of the zeros of the coefficients 
and the simplicity of the coefficients is startling: 

L(q) = 1 + 6q + 6q3 + 6q4 + 12q7 + 6q9 + 6q12 + 12q13 + 6q16 

+ 12q19 + 12q21 + 6q25 + 6q27 + 12q28 + 12q31 + 6q36 

+ 12q37 + 12q39 + 12q43 + 6q48 + 18q49 + 12q52 + 12q57 + 

M(q) = 1 - 2q - 2q3 + 6q4 - 4q7 - 2q9 + 6q12 - 4q13 + 6q16 

- 4q19 - 4q21 - 2q25 - 2q27 + 12q28 - 4q31 + 6q36 

- 4q37 - 4q39 - 4q43 + 6q48 - 6q49 + 12q52 - 4q57 + 

Furthermore, we observed numerically that if 

(4.13) L(t) := L(q) where q:= e-2rt/v3 

then 

(4.14) L(1.) = tL(t) and L(t + vX3i) = L(t). 
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At this stage, it was possible to explicitly identify L and M. From the divisibil- 
ity properties of the coefficients it was clear that divisibility related to r3(p), the 
number of integer representations of p of the form n2 + 3m2 = p. In fact, if 

00 

02 (q) E q(n+1/2)2 

n=-oo 

then 

(4.15) L(q) = 03(q)03(q3) + 02(q)02(q3) 

and 

(4.16) M(q) = 03(q)03(q3) - 02(q)02(q3) = 04(q)04(q3). 

We made this identification empirically-though one can identify L systemati- 
cally from its modular relations (4.13) and (4.14). We now have all the information 
required to completely analyze Borchardt's iteration, though much of it is not yet 
proved. Given the explicit forms of L and M, it is fairly straightforward to prove 
all the required relations, and this will be done in the next section. This, however, 
entirely obscures the method of derivation. 

5. Borchardt's Iteration Fully Analyzed. 

THEOREM 1. Let 

L(q) 03 (q)03 (q3) + 02(q)02(q3) 

and 
M(q) := 03(q)03(q3) - 02(q)02(q3) (= 04(q)04(q3)). 

Then, for Iql < 1, 

(5.1) (i) B2(L(q),M(q)) = 1 and (ii) B2 (1, 1()) = L(q)' 

while 

(5.2) (i) B(L2(q),M2(q)) = 1 and (ii) B (1 M2(q) _ 1 

In particular, for 0 < h < 1, 

(5 3) B(1 h) ( 1 + 4)fh 7r2/4 AG(1,I kl) AG (1I 1/) (5.3) B(1, h) 2) K (k) K () - (1 + V'k1) 2 

where 

(5.4) (i) Ohi = 1 -vk' and (ii) vk-+ v'k1i. 

Explicitly, 

(5.5) 1, k= - + fh2 { + 20h. 

Proof. We suppress q but not powers of q. Then 

LM + M2 = + M_3) 3) 
2 = ~~~2 M= 033(q4 404(q 
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since the identity M(q) = 04(q)04(q3) is a form of the cubic modular equation [4, 
p. 110]. But 0304 = 02(q2) (see (2.9)). Hence, 

(5.6) LM + M2 4 (q6) (q 

Now observe that 

L2 M2 = 4020302(q3)03(q3) = 02(q1/2)02(q3/2) 

since 402(q2)02 (q2) - 04(q) ([4, Section 2.1]). This becomes 

(5 7) L2(q2) - M2(q2) (L M) 2 

Then 

L 2(q 2) = (L-M)2 + M2(q2) = (L - M)2 + 2LM + M2 
4 

and 

(5.8) L2+3M2 2( 2) LM+M2 m2(q2). 

Now (5.8) shows that (3.1) and (3.2) are solved by a,, L(q2 ) and bn: M(q2n) 
Thence, 

B2(L(q),MA(q)) = B2(L(q2n), M(q2n)) = 1, 

since q2f tends to zero and B2 is continuous with B2(L(0), M(0)) = B2(1, 1) = 1. 
This and homogeneity establish (5.1). Since B2(1, x) = B(1/,x2), (5.2) follows. 

Now set vi 02(q3)/03(q3) and Vk := 02(q)/03(q). The cubic modular equation 
is then (5.4)(ii). Also using (2.12), 

L 2(q) = (1 + Viki)202(q)02(q3) 
2 

(1 + Vkl)2 

Hence, with h ((1 - Vki)/(1 + Vkij))2, we have established (5.3) and (5.4). The 
final equation (5.5) is a matter of some algebra. 0 

Stimulated by (5.8), we considered 04(q)04(q7) and discovered the following it- 
eration: 

(5.9) an+1 
a n + 2bn - 

2 

(5.10) bn+:= 2 

which shares the second mean with Borchardt's iteration. Let us denote the 
quadratically convergent limit by C(a, b). 

THEOREM 2. Let 

L*(q) := [03(q)3(q7) + 02(q)02(q7)], 

M*(q):= [X03(q)03(q7)- 02(q)42(q7)] (=04(q)04(q7)) 

Then, for lql < 1, 

(5.11) C(L* (q), M* (q)) = 1 
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and, for 0 < h < 1, 

(5.12) C(1h) 2 

where 

(5.13) (i) vh= and (ii) ~/Yki+ ~/kjj= 1. 

Proof. Much as above, but using the septic modular equation [4, p. 112], one 
establishes that 

(5.14) 2 = L*(q2), 2 
M 

= 
2* 

and the rest of the proof proceeds analogously. El 
An attractive reformulation of (5.12) is 

(5.15) C2[(1 + ~/k_i)2, (1- Xkj)2] = AG(1, k')AG(1, 1') 
whenever k and I satisfy the septic modular equation (5.13)(ii). 

It is now fairly straightforward to prove that 

(5.16) B(1,zx) lo 2(4 

as x] O, 

(5.17) C(1,x) ' - /l 

and to determine the order of error to be 0(x). 
A deeper and more remarkable fact, first discovered numerically, again in analogy 

with the AGM, is 

(5.18) B2(1, 2) = 7rrB(1, 2), 

where B(1, x) = d B(1, x). 

6. Examples and Applications of B and C. We begin with a few special- 
izations, 

(6.1) B(O, 1) = 3B(1, 2) = 3-4(e- /3) 

and 

(6.2) B(1, ) = 3B(1, ) = 1 3 19 ~(3Vf3-K32) 
where 

3= K (f3/ 
- 

) = 31/4 -4/33 (1 1) 

These came from observing that when h = 1, k = 1' and k,l = (V'3+ 1)/(2VX2). 9, 
At this singular value, K((/3?+ 1)/2X/2) = V/3K((v/3- 1)/2X/f), and K3 is a beta 
function value. Note also that B(O, 1) is the limiting value of the iteration with 
aO < bo :=1. Similarly, 

(6.3) B (1, ) = 1) AG(1, k/)AG(1, kl3), 
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where k6 (2 - 3)(3 - Vf) and k2/3 := (2 - x/3)(V/3 + V'/). Here, k6 is the 
6th singular value and K(k6) evaluates as 

K(k6) = 232-1/123-1/4 (1 + /3) , (5 5). 

In like fashion, the invariance principle shows 

(6.4) C(O, 1) = C(1, 2) = -C(1, 9), 

while 

C(O,1) = 7-4AG 1, 4 ), 

as follows from (5.15) with k7 = 1' = (3 - V7)/4V2, which has h = 

The logarithmic asymptotes can be used to write, for 1 < x < 2, 

log(x) = 7 { 1 1 + O(nlO-n) 

(6.5) X { 1 1 } 

= 
3=NB_ (106- ) - B~(1 0 x) 

+ O(nj10n), 

and in each case the approximation computes n digits of log in O(log n) steps (see 
[4, Chapter 7]). 

These logarithmic asymptotes also lead to two very clean quadratically converg- 
ing product expansions: 

(N = 3) let 

1~~~~~~~~~~~~~~~ 

zo := 9 and x L [1 + V/( -Xn)(1 + 3n) 

then 

(6.6) e / =6 rl; 2 \/1 Z)l Z 
n=OL 

and 

(N = 7) let 

xo :=-and 2xn 1 9 [+ Xn +/(-n(+ n 

then 

(6.7) e7rV =3fJ[ Xn+1+] 

The first comes from writing the homogeneous form of Borchardt's iteration in 
descending form and observing from (5.16) that 

exp [3Bwx- e)] 
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while B(1, xn) - 4-), as follows from (3.11). The second works similarly with 
(5.17) and its iteration. 

We finish with two iterations based on (5.18). Their derivation parallels that 
in Section 2.6 of [4]. We give the results as infinite products. Iruncation after n 
terms produces quadratic algorithms. 

Algorithms. For n > 1 let 

2(v + Xn) 

Yn 1 2Yn + Yn/V/Xn + VA 
Yn+1 

1 +3Y 

and set xi 2 (x/6 + 2) and Yi : (v/6? + 4). Then 

27 n- (1 + 3Xn) 2 

(6.9) 7r (5= 2 )f I(1+1/v 4 

(6.10) J6 (3) = 4 1/3 (2 )fl 4 + 

The first 3 approximations implicit in (6.9) give 1, 4 and 10 leading digits correct, 
respectively. 

7. The General Iteration and Relations. Borchardt [2] records the follow- 
ing theorem. 

THEOREM 3. Let a0, bon co and do be four decreasing positive real numbers with 
aodo -b0c0 > 0. Consider the four-term iteration of (1.13): 

an + bn + c3 + dn 

(6.10) ~ ~ ~ a+l :=6 4 -1/ 

4 

and denote the common limit of {an}, {bn}, {c} and {dn} by G(ao, bo, co)ido) 
Then 

G(ao,bc boc ,>d0) e da (1x-y) 

where R (x) := x (x-xo) (x-!l ) (x-!2 ) (x-R3) and where &xo, (xl, &!2 and ae3 are 
determined as follows. Let 

A :=ao+bo+co+ do, B := ao + bo-co-do, 
C:=ao-bo+co-do, D:=ao-bo-co+do. 

Let ~2B1 := +/47 V, 2B2 := -/T*-Y, 
20i := =a+ , 202 :-4, 
2D1 := JY? a 

2D2 := 
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and A\ = (ABCDBjC1D1B2C2D2) 1/4 . Then 

ACB1 CC1Dj AC2D1 BjC0C2 
aXo = 

A\ -, a, = A , 2 = A I ..nd a3 = A 
Borchardt also gives uniformizing parameters for the iteration-in terms of mul- 

tidimensional theta functions. Namely, 
00 

E. (?1)n(?l)mq8m2+tmn+un2 
n,m=-oo 

where the quadratic form smi2+tmn+un2 is positive definite. The four uniformizing 
functions correspond to the four choices of signs, (++), (-+), (+-) and (--), 
respectively. The iteration then takes the functions evaluated at (s, t, u) to the 
same functions evaluated at (2s, 2t, 2u). Observe that, if ao = bo and co = do, then 
the previous iteration reduces to the AGM. 

Another interesting four-term iteration is contained in the following theorem. 

THEOREM 4. Consider the four-term iteration, commencing with strictly posi- 
tive ao, bo, co and do, defined by 

an+1:= (an+bn+cn+dn 8anbnCadn b 

2 an+l := a2 T 
8 n 

+ 

bn+1 :=- 2 

2 

2 

Let H(ao, bo, co, do) denote the common limit. Then, if 

T(q) (03 (q))2 = ( qn2) 

n=-oo 

and lql < 1, we have 

H(T(q)T(r)T(s), T(-q)T(-r)T(-s), T(-q)T(r)T(-s), T(q)T(-r)T(-s)) = 1 

and 

H((kjh), k, j, h) = K(k)Ki(j)Kr(h) 

We omit the details of the proof. The key to the proof is the knowledge that 

an,, T(q 2')T(r 2')T(s 2n 
) 

bn : T(- _2n )T(-r 2n 
)T(_.82n ) 

Cn := T q _2n )T(r 2n )T(-s 2 

and 

dn :=T(q 2n )T(-r 2n )T(- s2n ) 

coupled with the AGM relations 

Tq2n1 = T(q2n ) + T(-q2n) 
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and 
T(-q ) 2n-1 

It is now a matter of calculation to verify that an, bn, cn and dn satisfy the recursion. 
If anbn = Cndn in Theorem 4, then the iteration reduces to the iteration of 

Theorem 3. This occurs if s = 0 and gives the following partial uniformization of 
Borchardt's iteration in a limiting case. 

COROLLARY. In the notation of the previous two theorems, for Iql, Irl < 1, 

G(T(q)T(r), T(-q)T(-r), T(-q)T(r), T(-q)T(-r)) 

= H(T(q)T(r), T(-q)T(-r), T(-q)T(r), T(q)T(-r)) = 1, 

and so 

G(1, h, k, hk) = K'(h)K'(k4 

Note that the positive definite condition aodo - boco > 0 is violated in this case, 
and so this does not follow directly from Borchardt's central analysis. 
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